#projection.x	projection.y	projection.z	knotoid_type	polynomial	PD_code
0.13985313	-0.923861252	-0.356260422	k0.1	 + 1	PD[];
-0.0775885421	-0.313532417	0.946402368	k0.1	 + 1	PD[];
0.988054138	0.134118152	-0.0759035028	k0.1	 + 1	PD[X[2,0,3,1],X[3,2,4,1]];
0.203815753	-0.977281403	0.0581394741	k0.1	 + 1	PD[];
-0.111095428	-0.917858741	-0.381042174	k0.1	 + 1	PD[];
-0.633900231	0.671668094	0.38344813	k0.1	 + 1	PD[];
-0.774746629	-0.207017601	-0.5974206	k0.1	 + 1	PD[X[0,2,1,3],X[1,4,2,3]];
0.895372263	0.173644835	-0.410068266	k0.1	 + 1	PD[X[2,0,3,1],X[3,2,4,1]];
0.329688052	-0.688960031	0.645476463	k0.1	 + 1	PD[];
0.482387133	-0.435517858	0.760017664	k0.1	 + 1	PD[];
-0.878738081	-0.253984122	-0.404118115	k0.1	 + 1	PD[];
0.650397883	-0.309316971	-0.693761922	k0.1	 + 1	PD[];
0.966101724	-0.251839363	0.056783739	k0.1	 + 1	PD[];
-0.391580277	-0.0790109983	-0.916745411	k0.1	 + 1	PD[];
-0.619386963	-0.571678091	-0.538092883	k2.1	 - A^(-10) + A^(-6) + A^(-4)	PD[X[0,5,1,6],X[3,2,4,1],X[2,8,3,7],X[4,7,5,6]];
0.763646362	-0.0493872247	-0.643743066	k0.1	 + 1	PD[];
0.233272094	-0.861589718	0.450829556	k0.1	 + 1	PD[];
0.453619355	-0.6885219	-0.565833079	k0.1	 + 1	PD[];
0.854067716	0.410703225	-0.319204007	k0.1	 + 1	PD[X[2,0,3,1],X[3,2,4,1]];
0.722566819	0.663511763	-0.19403436	k2.1	 - A^(-10) + A^(-6) + A^(-4)	PD[X[2,1,3,0],X[1,4,2,3],X[6,4,7,5],X[7,6,8,5]];
0.893153762	0.301190884	0.334006601	k0.1	 + 1	PD[];
-0.0976811518	-0.992484412	-0.0737094628	k0.1	 + 1	PD[];
0.235546056	-0.744007841	-0.625276249	k0.1	 + 1	PD[];
0.308275568	-0.333484884	0.890928733	k0.1	 + 1	PD[];
0.573825904	0.800941383	-0.170929028	k0.1	 + 1	PD[X[2,0,3,1],X[3,2,4,1]];
0.27448207	-0.491494755	0.826494101	k0.1	 + 1	PD[];
-0.580121013	-0.609727459	-0.540085212	k0.1	 + 1	PD[];
-0.408514799	0.383826029	0.828126343	k0.1	 + 1	PD[];
-0.776092867	-0.626595619	0.0711181513	k4.10m	 - A^(-12) - A^(-10) + A^(-8) + 2*A^(-6) + A^(-4) - A^(-2)	PD[X[0,5,1,4],X[1,7,2,6],X[7,3,8,2],X[3,5,4,6]];
0.137026779	0.858717671	0.493789048	k0.1	 + 1	PD[];
0.543068137	-0.290573676	0.787809582	k0.1	 + 1	PD[];
-0.56975553	0.639604771	-0.516027492	k0.1	 + 1	PD[];
-0.44793828	0.484282694	-0.751546119	k0.1	 + 1	PD[];
0.321820443	-0.810812689	0.488890975	k0.1	 + 1	PD[];
0.167654444	-0.619468428	0.766909939	k0.1	 + 1	PD[];
-0.647258803	-0.730921725	0.216354971	k2.1	 - A^(-10) + A^(-6) + A^(-4)	PD[X[0,3,1,2],X[3,2,4,1],X[4,6,5,7],X[5,8,6,7]];
0.489942119	-0.662238126	-0.566919204	k0.1	 + 1	PD[];
-0.0277829471	0.208585222	-0.977609489	k0.1	 + 1	PD[];
-0.559673715	-0.791700255	-0.244900059	k0.1	 + 1	PD[X[0,2,1,3],X[1,4,2,3],X[4,6,5,7],X[5,8,6,7]];
0.715119056	-0.62642744	0.310150607	k0.1	 + 1	PD[];
-0.26140874	0.639109327	-0.723328929	k0.1	 + 1	PD[];
-0.216348828	0.968785462	0.121028562	k0.1	 + 1	PD[];
-0.708864251	-0.623640176	0.329521477	k0.1	 + 1	PD[X[0,2,1,3],X[1,4,2,3]];
-0.102876465	0.253781041	0.961775242	k0.1	 + 1	PD[];
0.766501975	0.0941656234	0.635301156	k0.1	 + 1	PD[X[2,0,3,1],X[3,2,4,1]];
-0.0305497156	-0.072296844	0.996915183	k0.1	 + 1	PD[];
0.44497369	0.407892937	0.797258908	k0.1	 + 1	PD[];
-0.113211484	-0.218681105	0.969206755	k0.1	 + 1	PD[];
0.764094847	0.644935273	-0.0147498599	k2.1	 - A^(-10) + A^(-6) + A^(-4)	PD[X[2,1,3,0],X[1,4,2,3]];
0.684509321	0.722563433	0.0966906138	k2.1	 - A^(-10) + A^(-6) + A^(-4)	PD[X[2,1,3,0],X[1,4,2,3]];
0.518588726	0.713296291	0.471459579	k0.1	 + 1	PD[];
-0.802772666	0.455151562	0.385218254	k0.1	 + 1	PD[];
0.142902228	0.886102599	0.440909443	k0.1	 + 1	PD[];
-0.529676404	0.463768994	0.710183939	k0.1	 + 1	PD[];
-0.0550979245	-0.840989919	-0.538238028	k0.1	 + 1	PD[];
-0.523506927	-0.0413708707	0.851016421	k0.1	 + 1	PD[];
-0.0535985247	0.988067552	0.144394289	k0.1	 + 1	PD[];
0.562924653	0.610213196	0.557454653	k0.1	 + 1	PD[];
0.913150287	0.312557634	0.261656796	k0.1	 + 1	PD[];
-0.464643551	0.734871142	0.494035197	k0.1	 + 1	PD[];
0.0701463242	-0.986817695	-0.145843509	k0.1	 + 1	PD[];
0.639081217	-0.711227654	-0.292797579	k0.1	 + 1	PD[];
0.469174701	-0.536843973	0.701194445	k0.1	 + 1	PD[];
0.351451676	0.795067063	0.494317797	k0.1	 + 1	PD[];
-0.636078537	-0.235383549	-0.734846024	k0.1	 + 1	PD[X[0,2,1,3],X[1,4,2,3]];
-0.174289551	0.224287489	0.958810865	k0.1	 + 1	PD[];
-0.098009136	0.933075962	-0.346068574	k0.1	 + 1	PD[];
-0.0834544748	-0.62979122	0.772268328	k0.1	 + 1	PD[];
-0.203079485	0.451829228	0.868682377	k0.1	 + 1	PD[];
0.447301978	0.710881434	-0.542741677	k0.1	 + 1	PD[];
-0.721787338	0.628628282	-0.289567819	k0.1	 + 1	PD[];
-0.751130168	0.601562424	-0.271893583	k0.1	 + 1	PD[];
-0.370434576	0.551556467	-0.747371185	k0.1	 + 1	PD[];
-0.63627112	0.771457954	-0.00341859693	k0.1	 + 1	PD[];
-0.440617788	-0.555948679	-0.704824113	k0.1	 + 1	PD[];
-0.215726259	-0.926351372	0.308764176	k0.1	 + 1	PD[];
0.853893575	-0.517658847	-0.0538059459	k0.1	 + 1	PD[];
-0.0759528299	0.43723747	-0.896133116	k0.1	 + 1	PD[];
0.863478426	-0.0343469162	-0.50321496	k0.1	 + 1	PD[];
0.902752389	0.225310337	0.366433318	k0.1	 + 1	PD[];
0.0884496951	0.812376996	0.57638552	k0.1	 + 1	PD[];
0.274428875	-0.597347823	0.753567761	k0.1	 + 1	PD[];
0.1688509	-0.0100656101	-0.985590207	k0.1	 + 1	PD[];
-0.830917204	-0.416929833	-0.368437396	k2.1	 - A^(-10) + A^(-6) + A^(-4)	PD[X[2,1,3,0],X[1,4,2,3]];
0.477028259	0.647371987	-0.594435489	k0.1	 + 1	PD[];
-0.497689553	-0.657805153	0.565329541	k0.1	 + 1	PD[];
0.32206087	0.764439283	-0.558488477	k0.1	 + 1	PD[];
-0.364758103	-0.0571340052	-0.929347745	k0.1	 + 1	PD[];
-0.930258493	0.0133313978	-0.366662528	k0.1	 + 1	PD[];
0.962940188	0.262462136	-0.0621274598	k0.1	 + 1	PD[];
0.784392157	-0.618000001	-0.0529617118	k0.1	 + 1	PD[];
-0.0558851685	-0.735324989	0.67540655	k0.1	 + 1	PD[];
-0.336725299	-0.589426284	-0.734297439	k0.1	 + 1	PD[];
0.62619263	0.763557936	-0.157677102	k0.1	 + 1	PD[X[2,0,3,1],X[3,2,4,1]];
-0.965915324	0.162737703	0.201305803	k0.1	 + 1	PD[X[0,2,1,3],X[1,4,2,3]];
0.838272717	0.50279199	0.210948019	k0.1	 + 1	PD[];
-0.997446873	-0.0504073087	0.050584964	k0.1	 + 1	PD[X[0,2,1,3],X[1,4,2,3]];
0.892973211	-0.188466838	0.408753098	k0.1	 + 1	PD[];
0.123120026	0.674015601	0.728384809	k0.1	 + 1	PD[];
0.106575271	-0.881060621	-0.46084042	k0.1	 + 1	PD[];