#index_first	index_last	length	frequency	knotoid_type	polynomial
0	112	113	0.58	k0.1	 + 1
0	111	112	0.43	k0.1	 + 1
0	110	111	0.4	k0.1	 + 1
0	109	110	0.36	k2.1	 - A^(-10) + A^(-6) + A^(-4)
1	110	110	0.47	k0.1	 + 1
1	109	109	0.32	k1.1	 - A^(-4) - A^(-2)*v
2	110	109	0.42	k1.1	 - A^(-4) - A^(-2)*v
1	111	111	0.54	k0.1	 + 1
2	111	110	0.59	k0.1	 + 1
2	110	109	0.42	k1.1	 - A^(-4) - A^(-2)*v
3	111	109	0.56	k0.1	 + 1
3	110	108	0.49	k0.1	 + 1
2	110	109	0.42	k1.1	 - A^(-4) - A^(-2)*v
3	109	107	0.37	k0.1	 + 1
2	109	108	0.34	k1.1	 - A^(-4) - A^(-2)*v
3	108	106	0.34	k1.1	 - A^(-4) - A^(-2)*v
4	109	106	0.5	k0.1	 + 1
4	108	105	0.48	k0.1	 + 1
3	108	106	0.34	k1.1	 - A^(-4) - A^(-2)*v
4	107	104	0.4	k1.1	 - A^(-4) - A^(-2)*v
5	108	104	0.45	k0.1	 + 1
5	107	103	0.37	k0.1	 + 1
4	107	104	0.4	k1.1	 - A^(-4) - A^(-2)*v
5	106	102	0.26	k0.1	 + 1
4	106	103	0.32	k1.1	 - A^(-4) - A^(-2)*v
5	105	101	0.41	k0.1	 + 1
4	105	102	0.23	k0.1	 + 1
4	106	103	0.32	k1.1	 - A^(-4) - A^(-2)*v
3	105	103	0.29	k2.1	 - A^(-10) + A^(-6) + A^(-4)
4	104	101	0.27	k2.1	 - A^(-10) + A^(-6) + A^(-4)
5	105	101	0.41	k0.1	 + 1
5	104	100	0.39	k0.1	 + 1
4	104	101	0.27	k2.1	 - A^(-10) + A^(-6) + A^(-4)
5	103	99	0.33	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	104	99	0.52	k0.1	 + 1
6	103	98	0.51	k0.1	 + 1
5	103	99	0.33	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	102	97	0.49	k0.1	 + 1
5	102	98	0.39	k0.1	 + 1
5	103	99	0.33	k2.1	 - A^(-10) + A^(-6) + A^(-4)
4	102	99	0.36	k2.1	 - A^(-10) + A^(-6) + A^(-4)
5	101	97	0.43	k0.1	 + 1
4	101	98	0.37	k2.1	 - A^(-10) + A^(-6) + A^(-4)
5	100	96	0.4	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	101	96	0.44	k0.1	 + 1
6	100	95	0.53	k0.1	 + 1
5	100	96	0.4	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	99	94	0.56	k0.1	 + 1
5	99	95	0.39	k0.1	 + 1
5	100	96	0.4	k2.1	 - A^(-10) + A^(-6) + A^(-4)
4	99	96	0.38	k2.1	 - A^(-10) + A^(-6) + A^(-4)
5	98	94	0.37	k0.1	 + 1
4	98	95	0.31	k2.1	 - A^(-10) + A^(-6) + A^(-4)
5	97	93	0.39	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	98	93	0.53	k0.1	 + 1
6	97	92	0.48	k0.1	 + 1
5	97	93	0.39	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	96	91	0.49	k0.1	 + 1
5	96	92	0.41	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	95	90	0.44	k0.1	 + 1
5	95	91	0.35	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	94	89	0.45	k0.1	 + 1
5	94	90	0.43	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	93	88	0.52	k0.1	 + 1
5	93	89	0.39	k0.1	 + 1
5	94	90	0.43	k2.1	 - A^(-10) + A^(-6) + A^(-4)
4	93	90	0.41	k2.1	 - A^(-10) + A^(-6) + A^(-4)
5	92	88	0.42	k0.1	 + 1
4	92	89	0.46	k2.1	 - A^(-10) + A^(-6) + A^(-4)
5	91	87	0.42	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	92	87	0.53	k0.1	 + 1
6	91	86	0.52	k0.1	 + 1
5	91	87	0.42	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	90	85	0.5	k0.1	 + 1
5	90	86	0.51	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	89	84	0.51	k0.1	 + 1
5	89	85	0.39	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	88	83	0.51	k0.1	 + 1
5	88	84	0.4	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	87	82	0.61	k0.1	 + 1
5	87	83	0.38	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	86	81	0.53	k0.1	 + 1
5	86	82	0.43	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	85	80	0.5	k0.1	 + 1
5	85	81	0.39	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	84	79	0.49	k0.1	 + 1
5	84	80	0.39	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	83	78	0.6	k0.1	 + 1
5	83	79	0.4	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	82	77	0.57	k0.1	 + 1
5	82	78	0.33	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	81	76	0.57	k0.1	 + 1
5	81	77	0.34	k2.1	 - A^(-10) + A^(-6) + A^(-4)
6	80	75	0.44	k0.1	 + 1
5	80	76	0.33	k0.1	 + 1
5	81	77	0.34	k2.1	 - A^(-10) + A^(-6) + A^(-4)
4	80	77	0.28	k2.1	 - A^(-10) + A^(-6) + A^(-4)
5	79	75	0.33	k0.1	 + 1
4	79	76	0.24	k1.1	 - A^(-4) - A^(-2)*v
5	78	74	0.37	k1.1	 - A^(-4) - A^(-2)*v
6	79	74	0.43	k0.1	 + 1
6	78	73	0.48	k0.1	 + 1
5	78	74	0.37	k1.1	 - A^(-4) - A^(-2)*v
6	77	72	0.54	k0.1	 + 1
5	77	73	0.49	k0.1	 + 1
5	78	74	0.37	k1.1	 - A^(-4) - A^(-2)*v
4	77	74	0.4	k1.1	 - A^(-4) - A^(-2)*v
5	76	72	0.51	k0.1	 + 1
4	76	73	0.44	k1.1	 - A^(-4) - A^(-2)*v
5	75	71	0.62	k0.1	 + 1
4	75	72	0.66	k0.1	 + 1
4	76	73	0.44	k1.1	 - A^(-4) - A^(-2)*v
3	75	73	0.44	k0.1	 + 1
3	76	74	0.39	k1.1	 - A^(-4) - A^(-2)*v
2	75	74	0.41	k0.1	 + 1
2	76	75	0.33	k1.1	 - A^(-4) - A^(-2)*v
1	75	75	0.38	k0.1	 + 1
1	76	76	0.31	k1.1	 - A^(-4) - A^(-2)*v
0	75	76	0.39	k0.1	 + 1
0	76	77	0.31	k2.1	 - A^(-10) + A^(-6) + A^(-4)
0	74	75	0.52	k0.1	 + 1
0	73	74	0.6	k0.1	 + 1
0	72	73	0.71	k0.1	 + 1
0	71	72	0.71	k0.1	 + 1
0	70	71	0.72	k0.1	 + 1
0	69	70	0.57	k0.1	 + 1
0	68	69	0.74	k0.1	 + 1
0	67	68	0.78	k0.1	 + 1
0	66	67	0.93	k0.1	 + 1
0	65	66	0.95	k0.1	 + 1
0	64	65	0.92	k0.1	 + 1
0	63	64	0.95	k0.1	 + 1
0	62	63	0.97	k0.1	 + 1
0	61	62	0.99	k0.1	 + 1
0	60	61	0.97	k0.1	 + 1
0	59	60	0.99	k0.1	 + 1
0	58	59	0.96	k0.1	 + 1
0	57	58	0.98	k0.1	 + 1
0	56	57	0.96	k0.1	 + 1
0	55	56	0.98	k0.1	 + 1
0	54	55	0.95	k0.1	 + 1
0	53	54	0.99	k0.1	 + 1
0	52	53	0.94	k0.1	 + 1
0	51	52	0.98	k0.1	 + 1
0	50	51	0.98	k0.1	 + 1
0	49	50	0.94	k0.1	 + 1
0	48	49	0.96	k0.1	 + 1
0	47	48	0.97	k0.1	 + 1
0	46	47	0.98	k0.1	 + 1
0	45	46	0.97	k0.1	 + 1
0	44	45	0.94	k0.1	 + 1
0	43	44	0.92	k0.1	 + 1
0	42	43	0.9	k0.1	 + 1
0	41	42	0.88	k0.1	 + 1
0	40	41	0.84	k0.1	 + 1
0	39	40	0.98	k0.1	 + 1
0	38	39	0.95	k0.1	 + 1
0	37	38	0.98	k0.1	 + 1
0	36	37	0.99	k0.1	 + 1
0	35	36	0.99	k0.1	 + 1
0	34	35	1	k0.1	 + 1
0	33	34	1	k0.1	 + 1
0	32	33	1	k0.1	 + 1
0	31	32	1	k0.1	 + 1
0	30	31	1	k0.1	 + 1
0	29	30	1	k0.1	 + 1
0	28	29	1	k0.1	 + 1
0	27	28	1	k0.1	 + 1
0	26	27	1	k0.1	 + 1
0	25	26	1	k0.1	 + 1
0	24	25	1	k0.1	 + 1
0	23	24	1	k0.1	 + 1
0	22	23	1	k0.1	 + 1
0	21	22	1	k0.1	 + 1
0	20	21	1	k0.1	 + 1
0	19	20	1	k0.1	 + 1
0	18	19	1	k0.1	 + 1
0	17	18	1	k0.1	 + 1
0	16	17	1	k0.1	 + 1
0	15	16	1	k0.1	 + 1
0	14	15	1	k0.1	 + 1
0	13	14	1	k0.1	 + 1
0	12	13	1	k0.1	 + 1
0	11	12	1	k0.1	 + 1
0	10	11	1	k0.1	 + 1
0	9	10	1	k0.1	 + 1
0	8	9	1	k0.1	 + 1
0	7	8	1	k0.1	 + 1
0	6	7	1	k0.1	 + 1
0	5	6	1	k0.1	 + 1
0	4	5	1	k0.1	 + 1
0	3	4	1	k0.1	 + 1
0	2	3	1	k0.1	 + 1
0	1	2	1	k0.1	 + 1
0	2	3	1	k0.1	 + 1
1	2	2	1	k0.1	 + 1
1	3	3	1	k0.1	 + 1
2	3	2	1	k0.1	 + 1
2	4	3	1	k0.1	 + 1
3	4	2	1	k0.1	 + 1
3	5	3	1	k0.1	 + 1
4	5	2	1	k0.1	 + 1
4	6	3	1	k0.1	 + 1
5	6	2	1	k0.1	 + 1
5	7	3	1	k0.1	 + 1
6	7	2	1	k0.1	 + 1
6	8	3	1	k0.1	 + 1
7	8	2	1	k0.1	 + 1
7	9	3	1	k0.1	 + 1
8	9	2	1	k0.1	 + 1
8	10	3	1	k0.1	 + 1
9	10	2	1	k0.1	 + 1
9	11	3	1	k0.1	 + 1
10	11	2	1	k0.1	 + 1
10	12	3	1	k0.1	 + 1
11	12	2	1	k0.1	 + 1
11	13	3	1	k0.1	 + 1
12	13	2	1	k0.1	 + 1
12	14	3	1	k0.1	 + 1
13	14	2	1	k0.1	 + 1
13	15	3	1	k0.1	 + 1
14	15	2	1	k0.1	 + 1
14	16	3	1	k0.1	 + 1
15	16	2	1	k0.1	 + 1
15	17	3	1	k0.1	 + 1
16	17	2	1	k0.1	 + 1
16	18	3	1	k0.1	 + 1
17	18	2	1	k0.1	 + 1
17	19	3	1	k0.1	 + 1
18	19	2	1	k0.1	 + 1
18	20	3	1	k0.1	 + 1
19	20	2	1	k0.1	 + 1
19	21	3	1	k0.1	 + 1
20	21	2	1	k0.1	 + 1
20	22	3	1	k0.1	 + 1
21	22	2	1	k0.1	 + 1
21	23	3	1	k0.1	 + 1
22	23	2	1	k0.1	 + 1
22	24	3	1	k0.1	 + 1
23	24	2	1	k0.1	 + 1
23	25	3	1	k0.1	 + 1
24	25	2	1	k0.1	 + 1
24	26	3	1	k0.1	 + 1
25	26	2	1	k0.1	 + 1
25	27	3	1	k0.1	 + 1
26	27	2	1	k0.1	 + 1
26	28	3	1	k0.1	 + 1
27	28	2	1	k0.1	 + 1
27	29	3	1	k0.1	 + 1
28	29	2	1	k0.1	 + 1
28	30	3	1	k0.1	 + 1
29	30	2	1	k0.1	 + 1
29	31	3	1	k0.1	 + 1
30	31	2	1	k0.1	 + 1
30	32	3	1	k0.1	 + 1
31	32	2	1	k0.1	 + 1
31	33	3	1	k0.1	 + 1
32	33	2	1	k0.1	 + 1
32	34	3	1	k0.1	 + 1
33	34	2	1	k0.1	 + 1
33	35	3	1	k0.1	 + 1
34	35	2	1	k0.1	 + 1
34	36	3	1	k0.1	 + 1
35	36	2	1	k0.1	 + 1
35	37	3	1	k0.1	 + 1
36	37	2	1	k0.1	 + 1
36	38	3	1	k0.1	 + 1
37	38	2	1	k0.1	 + 1
37	39	3	1	k0.1	 + 1
38	39	2	1	k0.1	 + 1
38	40	3	1	k0.1	 + 1
39	40	2	1	k0.1	 + 1
39	41	3	1	k0.1	 + 1
40	41	2	1	k0.1	 + 1
40	42	3	1	k0.1	 + 1
41	42	2	1	k0.1	 + 1
41	43	3	1	k0.1	 + 1
42	43	2	1	k0.1	 + 1
42	44	3	1	k0.1	 + 1
43	44	2	1	k0.1	 + 1
43	45	3	1	k0.1	 + 1
44	45	2	1	k0.1	 + 1
44	46	3	1	k0.1	 + 1
45	46	2	1	k0.1	 + 1
45	47	3	1	k0.1	 + 1
46	47	2	1	k0.1	 + 1
46	48	3	1	k0.1	 + 1
47	48	2	1	k0.1	 + 1
47	49	3	1	k0.1	 + 1
48	49	2	1	k0.1	 + 1
48	50	3	1	k0.1	 + 1
49	50	2	1	k0.1	 + 1
49	51	3	1	k0.1	 + 1
50	51	2	1	k0.1	 + 1
50	52	3	1	k0.1	 + 1
51	52	2	1	k0.1	 + 1
51	53	3	1	k0.1	 + 1
52	53	2	1	k0.1	 + 1
52	54	3	1	k0.1	 + 1
53	54	2	1	k0.1	 + 1
53	55	3	1	k0.1	 + 1
54	55	2	1	k0.1	 + 1
54	56	3	1	k0.1	 + 1
55	56	2	1	k0.1	 + 1
55	57	3	1	k0.1	 + 1
56	57	2	1	k0.1	 + 1
56	58	3	1	k0.1	 + 1
57	58	2	1	k0.1	 + 1
57	59	3	1	k0.1	 + 1
58	59	2	1	k0.1	 + 1
58	60	3	1	k0.1	 + 1
59	60	2	1	k0.1	 + 1
59	61	3	1	k0.1	 + 1
60	61	2	1	k0.1	 + 1
60	62	3	1	k0.1	 + 1
61	62	2	1	k0.1	 + 1
61	63	3	1	k0.1	 + 1
62	63	2	1	k0.1	 + 1
62	64	3	1	k0.1	 + 1
63	64	2	1	k0.1	 + 1
63	65	3	1	k0.1	 + 1
64	65	2	1	k0.1	 + 1
64	66	3	1	k0.1	 + 1
65	66	2	1	k0.1	 + 1
65	67	3	1	k0.1	 + 1
66	67	2	1	k0.1	 + 1
66	68	3	1	k0.1	 + 1
67	68	2	1	k0.1	 + 1
67	69	3	1	k0.1	 + 1
68	69	2	1	k0.1	 + 1
68	70	3	1	k0.1	 + 1
69	70	2	1	k0.1	 + 1
69	71	3	1	k0.1	 + 1
70	71	2	1	k0.1	 + 1
70	72	3	1	k0.1	 + 1
71	72	2	1	k0.1	 + 1
71	73	3	1	k0.1	 + 1
72	73	2	1	k0.1	 + 1
72	74	3	1	k0.1	 + 1
73	74	2	1	k0.1	 + 1
73	75	3	1	k0.1	 + 1
74	75	2	1	k0.1	 + 1
74	76	3	1	k0.1	 + 1
75	76	2	1	k0.1	 + 1
75	77	3	1	k0.1	 + 1
76	77	2	1	k0.1	 + 1
76	78	3	1	k0.1	 + 1
77	78	2	1	k0.1	 + 1
77	79	3	1	k0.1	 + 1
78	79	2	1	k0.1	 + 1
78	80	3	1	k0.1	 + 1
79	80	2	1	k0.1	 + 1
79	81	3	1	k0.1	 + 1
80	81	2	1	k0.1	 + 1
80	82	3	1	k0.1	 + 1
81	82	2	1	k0.1	 + 1
81	83	3	1	k0.1	 + 1
82	83	2	1	k0.1	 + 1
82	84	3	1	k0.1	 + 1
83	84	2	1	k0.1	 + 1
83	85	3	1	k0.1	 + 1
84	85	2	1	k0.1	 + 1
84	86	3	1	k0.1	 + 1
85	86	2	1	k0.1	 + 1
85	87	3	1	k0.1	 + 1
86	87	2	1	k0.1	 + 1
86	88	3	1	k0.1	 + 1
87	88	2	1	k0.1	 + 1
87	89	3	1	k0.1	 + 1
88	89	2	1	k0.1	 + 1
88	90	3	1	k0.1	 + 1
89	90	2	1	k0.1	 + 1
89	91	3	1	k0.1	 + 1
90	91	2	1	k0.1	 + 1
90	92	3	1	k0.1	 + 1
91	92	2	1	k0.1	 + 1
91	93	3	1	k0.1	 + 1
92	93	2	1	k0.1	 + 1
92	94	3	1	k0.1	 + 1
93	94	2	1	k0.1	 + 1
93	95	3	1	k0.1	 + 1
94	95	2	1	k0.1	 + 1
94	96	3	1	k0.1	 + 1
95	96	2	1	k0.1	 + 1
95	97	3	1	k0.1	 + 1
96	97	2	1	k0.1	 + 1
96	98	3	1	k0.1	 + 1
97	98	2	1	k0.1	 + 1
97	99	3	1	k0.1	 + 1
98	99	2	1	k0.1	 + 1
98	100	3	1	k0.1	 + 1
99	100	2	1	k0.1	 + 1
99	101	3	1	k0.1	 + 1
100	101	2	1	k0.1	 + 1
100	102	3	1	k0.1	 + 1
101	102	2	1	k0.1	 + 1
101	103	3	1	k0.1	 + 1
102	103	2	1	k0.1	 + 1
102	104	3	1	k0.1	 + 1
103	104	2	1	k0.1	 + 1
103	105	3	1	k0.1	 + 1
104	105	2	1	k0.1	 + 1
104	106	3	1	k0.1	 + 1
105	106	2	1	k0.1	 + 1
105	107	3	1	k0.1	 + 1
106	107	2	1	k0.1	 + 1
106	108	3	1	k0.1	 + 1
107	108	2	1	k0.1	 + 1
107	109	3	1	k0.1	 + 1
108	109	2	1	k0.1	 + 1
108	110	3	1	k0.1	 + 1
109	110	2	1	k0.1	 + 1
109	111	3	1	k0.1	 + 1
110	111	2	1	k0.1	 + 1
110	112	3	1	k0.1	 + 1
111	112	2	1	k0.1	 + 1